Proof of the Fundamental Theorem of Algebra's uniqueness part without utilizing Bézout's lemma.
Lemma (Euclid)
Let p be prime. From p∣ab⟹p∣a or p∣b.
Proof:
Let np=ab and ab a minimal counterexample. We assume, that p∤a and show, that p∣b.
np(n−b)p=ab=(a−p)b∣−bp
a=p:
trivial
a>p:
From p∤a⟹p∤(a−p) and with (a−p)b<ab⟹p∣b
a<p:
(n−b)p(b−n)p(b−n)p−(x−1)abbp−np−xab+abbp−xab=bp−xnp⟹p=(a−p)b=(p−a)b,p:=xa+y(y<a)=(p−a−(x−1)a)b=(p−a−xa+a)b=yb=(b−xn)p=yb<ab∣b∣⋅(−1)∣−(x−1)ab
Theorem (Fundamental Theorem of Arithmetic)
Every n∈N has an unique prime factorization.
Proof:
Let
a=i=1∏npiki=i=1∏mqili
and a the smallest number with a non-unique decomposition by primes. From Euclid's lemma follows, that for some (s,t) ps=qt.
With a:=psa^:
a^=psks−1i=1,i=s∏npiki=qtlt−1i=1,i=t∏mqili
Because a^<a⟹n=m,s=t,pi=qi,ki=li∀i