AsciiDoc Example
Links
Table (Playing with Kaggle; uses AsciiDoc includes)
--- snip ---
Model | Epochs | bs | lr | Momentum | Result (local) | Result (Kaggle) | Remarks |
---|---|---|---|---|---|---|---|
SimpleNet |
50 |
20 |
0.007 |
0.9 |
~97 |
||
ConvNet |
50 |
25 |
0.008 |
0.9 |
99.257 |
||
" |
50 |
17 |
0.008 |
0.9 |
99.1964 |
augmented |
|
" |
50 |
17 |
0.008 |
0.9 |
99.3143 |
99.342 |
augmented bn |
Binary Ensemble |
25 |
17 |
0.007 |
0.9 |
>99 |
||
" |
22 |
17 |
0.0085 |
0.9 |
99.23928 |
99.328 |
augmented |
" |
22 |
17 |
0.0085 |
0.9 |
99.34643 |
99.357 |
augmented bn |
--- snap ---
(1) augmented: one additional variant per image rotated randomly in [-5,5] degree.
(2) bn: batch-norm
Mathematics
Inline Math:
Display Math:
Inline Math:
Display Math:
The Wiener process in is defined by
More math…​
With we get the following differential equation on the unit sphere:
Outline as partial TeX file inclusion
Line block - takes only the inner part of a LaTeX display-math environment by specifying row delimiters for the included LaTeX file:
--- snip ---
--- snap ---
Single line (as inline): start include → ← stop include
Citations
-
Cited text 1: (Touchette, 2012)
-
Cited text 2 [3]: Dematteis et al. (2018)
SVG image
Code
Verbatim file inclusion
# include example
from torch.utils.data import TensorDataset
from torch import Tensor, LongTensor, FloatTensor
def loadData(path) -> Tuple[np.ndarray, np.ndarray]:
'''
Load data from kaggle mnist set.
'''
# Read
df = pd.read_csv(str(path)) # 40.000 entries
# tdata = pd.read_csv(data_raw_dir + sep + 'train.csv') # 28.000 entries
has_labels = True if 'label' in df.columns else False
Normal code block
from torch.utils.data import TensorDataset from torch import Tensor, LongTensor, FloatTensor def loadData(path) -> Tuple[np.ndarray, np.ndarray]: ''' Load data from kaggle mnist set. path -- input csv Return scaled images [0,1] and labels (if available) as numpy arrays (dtype: float32, int64) ''' # Read df = pd.read_csv(str(path)) # 40.000 entries # tdata = pd.read_csv(data_raw_dir + sep + 'train.csv') # 28.000 entries has_labels = True if 'label' in df.columns else False
Some inline code
.
References
Giovanni Dematteis, Tobias Grafke, and Eric Vanden-Eijnden. Rogue waves and large deviations in deep sea. Proceedings of the National Academy of Sciences, 115(5):855–860, January 2018. doi:10.1073/pnas.1710670115. ↩
Hugo Touchette. A basic introduction to large deviations: Theory, applications, simulations. arXiv:1106.4146 [cond-mat, physics:math-ph], February 2012. arXiv:1106.4146. ↩